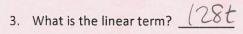
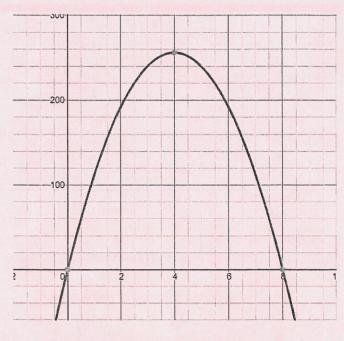

Applications with Quadratic Functions


The graph at the right shows the height, h(t), in feet of a small rocket, t seconds after it launched. The path of the rocket is given by the equation:

$$h(t) = -16t^2 + 128t$$


2. What does the quadratic term represent?

acceleration due to gravity

4. What does the linear term tell us?

Initial velocity

- 5. What is the constant?
- 6. What does the constant tell us?

Initial Height

- 7. What ordered pair represents when the rocket hits the ground? (80)
- 8. How long is the rocket in the air? _____ Explain how you got your answer.

8 seconds. It is the second X-intercept

9. Using the graph, estimate the greatest height the rocket reaches. 258 ft
Where did you find this information? (Be specific)

The Vertex of the graph - yvalue

The vertex of the graph - tvalue

11. Using the equation, calculate the greatest height the rocket reaches AND the time it took to get there.

- 13. Using the equation, calculate the exact value of the height of the rocket at 1 second.

- 14. After 2 seconds:
 - a. Estimate how high the rocket is. (90 ft
 - b. Is the rocket going up or going down?
 - c. Using the equation, calculate the exact value of the height of the rocket at 2 seconds.

- 15. After 6 seconds,
 - a. Estimate how high the rocket is. 190 ft
 - b. Is the rocket going up or going down?
 - c. Using the eqution, calculate the exact value of the height of the rocket at 6 seconds.

16. Do you think the rocket is traveling faster from 0 to 1 second or from 3 to 4 seconds. Explain your answer.

Faster from 0 to 1 seconds.

It covers more feet per second.

Gravity is slowing its ascent.