Applications with Quadratic Functions

The graph at the right shows the height, $h(t)$, in feet of a small rocket, t seconds after it launched. The path of the rocket is given by the equation:

$$
h(t)=-16 t^{2}+128 t
$$

1. What is the quadratic term? \qquad
2. What does the quadratic term represent?
3. What is the linear term? \qquad
4. What does the linear term tell us?

5. What is the constant? \qquad
6. What does the constant tell us?
7. What ordered pair represents when the rocket hits the ground? \qquad
8. How long is the rocket in the air? \qquad Explain how you got your answer.
9. Using the graph, estimate the greatest height the rocket reaches .

Where did you find this information? (Be specific)
10. Using the graph, estimate how long it took the rocket to get to the greatest height. \qquad Where did you find this information? (Be specific)
11. Using the equation, calculate the greatest height the rocket reaches AND the time it took to get there.
12. Estimate how high the rocket is after 1 second. \qquad
13. Using the equation, calculate the exact value of the height of the rocket at 1 second.
14. After 2 seconds:
a. Estimate how high the rocket is.
b. Is the rocket going up or going down?
c. Using the equation, calculate the exact value of the height of the rocket at 2 seconds.
15. After 6 seconds,
a. Estimate how high the rocket is.
b. Is the rocket going up or going down?
c. Using the eqution, calculate the exact value of the height of the rocket at 6 seconds.
16. Do you think the rocket is traveling faster from 0 to 1 second or from 3 to 4 seconds. Explain your answer.

