Guided Notes - The Elimination Method

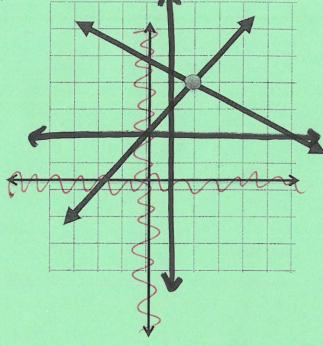
jective: Use the elimination method to solve a system of equations.

1) What method was used to solve this system of equations?

$$y = x + 1$$

$$x + 2y = 5$$

$$x + 2y = 5$$


$$-x$$
 $-x$

$$\frac{2y}{2} = \frac{-x}{2} + \frac{5}{2}$$

$$y = -\frac{1}{2}x + 2.5$$

Method used is ______ Craphing

Final answer _

2) What method was used to solve this system of equations?

$$y = x + 1$$

$$x + 2y = 5$$

Method used is Substitution

Final answer (1,2)

$$x + 2(x+1) = 5$$

$$x + 2x + 2 = 5$$

$$y = 1 + 1$$

$$3x + 2 = 5$$

$$y = 2$$

$$3x = 3$$

$$x = 1$$

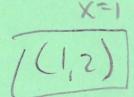
One solution: (1,2)

Method 3 - The Elmination Method

STEP 1: Write your equations in standard form. x's, y's, and constants should be written under each other in columns.

STEP 2: Choose a variable to eliminate. You may have to multiply one or both equations by a constant so the variable you wish to eliminate has opposite coefficients.

STEP 3: Add the equations. One of your variables will be eliminated.


STEP 4: Solve for the remaining variable.

TEP 5: Substitute your answer from step 4 into any of the equations and solve for the other variable.

Example 1

$$-x + y = 1$$

$$x + 2y = 5$$

Example 2

Solve the system of equations below using the elimination method

$$-x - 3y = -5$$

 $x + 2y = 10$
 $-y = -5$

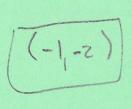
$$X+2(-5)=10$$

 $X-10=10$
 $X=20$

(20,-5)

Example 3

Solve the system of equations below using the elimination method


$$x+y=-3$$

$$x-y=1$$

$$2x=-2$$

$$x=-1$$

$$-1-y=1$$

 $-y=2$
 $y=-2$

Try these on your own

$$4x - 3y = 4
4x + 3y = 28$$

$$8x = 32$$

$$x = 4$$

$$4(4) - 3y = 4$$

$$1(-3y = 4)$$

$$-3y = -12$$

$$y = 4$$

$$1(-3y = 4)$$

$$(4, 4)$$

$$8x - 4y = 36$$

$$3x + 4y = -14$$

$$1/x = 72$$

$$x=2$$

$$8(2) - 4y = 36$$

$$16 - 4y = 36$$

$$-4y = 20$$

$$y = -5$$

$$(2, -5)$$

$$-2x - 9y = -25$$

$$4x + 9y = 23$$

$$2x = -2$$

$$x = -1$$

$$-2(-1) - 9y = -25$$

$$-9y = -27$$

$$y = 3$$

$$((-1,3))$$

Guided Notes - The Elimination Method - Day 2

Objective: Use the elimination method to solve a system of equations

What if you have a system of equations that looks like this? Now what? follow the same

$$(5x + y = 9) 7$$

$$10x - 7y = -18$$

$$5x + y = 9$$
) 7
 $10x - 7y = -18$ 35x + 7y = 63
 $10x - 7y = -18$

Example 2

$$(-3x + 7y = -16)$$

$$3x + 5y = 16$$

$$\begin{array}{ccc} (5) & -3x + 7(-4) = -16 \\ & -3x = 12 \\ & x = -4 \end{array}$$

Example 4

$$\begin{pmatrix} -7x - 8y = 9 \end{pmatrix} \mathcal{A}$$
$$\begin{pmatrix} -4x + 9y = -22 \end{pmatrix}$$

Example 3

(1,4)

$$16x - 10y = 10$$
 $16x - 10y = 10$

5 step procedure.

$$(-8x - 6y = 6)(2) - 16x - 12y = 12$$

(5)
$$16x-10(-1)=10$$
 $16x=0$
 $(0,-1)$

Example 5

$$\begin{pmatrix}
5x + 4y = -14 \\
3x + 6y = 6
\end{pmatrix}$$

Try these on your own:

$$4x + 15y = 17$$

$$-(x + 5y = -13)$$

$$4x + 15y = 17$$

$$-(x + 5y = -13)$$

$$4x + 15y = 17$$

$$-(x + 70y = -52)$$

$$35y = -35$$

$$4y = -15$$

$$x + y = 10$$

$$4y = -5$$

$$x + y = 10$$

$$(2x - 7y = 9)3$$

$$4y = 3x = 6$$

$$(-3x + 4y = 6)(2)$$

$$6x - 21y = 27$$

$$-6x + 8y = 12$$

$$-18y = 39$$

$$4y = -3$$

$$2x + 21 = 9$$

$$2x = -12$$

$$-13y = 39$$

$$4y = -3$$

$$2x + 21 = 9$$

$$2x = -12$$

$$-13y = -3$$

$$2x + 21 = 9$$

$$2x = -12$$

$$-13y = -3$$

$$2x + 21 = 9$$

$$\frac{3(2x+4y=-4)}{2(3x+5y=-3)}$$

$$-6x-12y=12$$

$$6x+10y=-6$$

$$-2y=6$$

$$y=-3$$

$$2x+4(-3)=-4$$

$$2x-4y=8$$

$$y=\frac{1}{2}x+6$$

$$(-\frac{1}{2}x+y=6)$$

$$-2x+4y=24$$

$$2x-4y=8$$

$$0=32$$

$$0=32$$

$$\sqrt{3}x-y=-1$$

$$\sqrt{3}$$

$$(\frac{1}{3}x-y=-1)$$

$$\sqrt{3}$$

$$(\frac{1}{5}x-\frac{2}{5}y=-1)$$

$$\sqrt{5}$$

$$x-3y=-3$$

$$-x+2y=5$$

$$-y=2$$

$$\sqrt{-9}=2$$

$$\sqrt{-9}=2$$