				*
Unit 2 4.6 Negative and	d Zero E	Exponent Rules	Notes	Name:

Key

Using the exponent rules you have already learned simplify the following problems...

$\frac{x^3}{x^5} \qquad \qquad \frac{b^3c^7}{b^6c^2}$		$\frac{18f^3g^4}{27fg^5}$		
$X^{3-5} = X^{-2}$ or $X = X^{-2}$	b-3c5 or	3 f ² g ⁻¹ or		
$\frac{\cancel{\times}\cancel{\times}\cancel{\times}\cancel{\times}}{\cancel{\times}\cancel{\times}\cancel{\times}\cancel{\times}} = \frac{1}{\cancel{\times}^2}$	b ³	$\frac{2f^2}{3g}$		

Can you generalize what has happened?

Exponents can be positive or negative depending where you Negative Exponents Rule:

$$a^{-n} = \frac{1}{a^n}$$
 or $\frac{1}{a^{-n}} = a^n$

Using the exponent rules you have already learned simplify the following problems...

4 ^x		
Power	Answer	
4 ⁵	1024	
4 ⁴	256	
4 ³	64	
4 ²	16	
41	4	
4 ⁰		

Two ways	of looking at it
*5	1
25	
x^5	X5-5 = X0
x^5	× -×
X	

X must equal 1

Can you generalize what has happened?

Zero as the Exponent Rule:

Exponential Expression	Exponential Expression (positive exponents)	
k^{-3}	$\frac{1}{163}$	
$6f^{-7}$	6 f 7	
$12g^3f^{-2}$	1293/62	
$\frac{-37x^3}{y^{-7}}$	-37 x 3 y 7	
$a^{-1}b^{-2}c^{-3}$	$\frac{1}{ab^2c^3}$	

Operations with exponents that are negative and zero:

$$1. x^3 \cdot x^{-2}$$

X

$$2. \, \frac{14x^{-6}}{x^3}$$

14x-9

01

3.
$$\frac{a^{-5}}{a^4}$$

$$4. \, \frac{10m^3n^4}{-25n^9}$$

$$-\frac{2}{5}$$
 m³n⁻⁵

$$\frac{Or}{-2m^3}$$

$$\frac{5n^5}{(42m-3)^2}$$

$$7. \left(\frac{42x^{-3}}{20y^{-5}}\right)^2$$

$$\left(\frac{21x^{-3}}{10y^{-5}}\right)^{2}$$
 $\frac{441x^{-6}}{100y^{-10}}$
 $\frac{441y^{10}}{100x^{6}}$

5.
$$(k^5)^{-3}$$

$$8. \left(\frac{14x^7z^4}{21x^3z^{10}} \right) (9x^{-8}y^{-2})^0$$

6.
$$(16z^{-5})^2$$

$$9. \left(\frac{-9d^3e}{2d^3e^7}\right)^3$$

Simplify each expression so your answer does not contain negative exponents.

1.
$$\frac{x^4y^{-5}}{z^{-2}}$$

2.
$$\frac{x^{-7}}{x^4}$$

$$\left[\begin{array}{c} X'' \end{array}\right]$$

3.
$$\frac{x^3}{x^{-6}}$$

$$4. x^{-2} \cdot x \cdot x^{-8}$$

$$\chi^{-q}$$
 $\left(\begin{array}{c} 1 \\ \chi^q \end{array}\right)$

$$5(x^{-2})^3$$

6.
$$\frac{x^4}{x^8}$$

$$\begin{pmatrix} \chi^{-4} \\ \chi^{4} \end{pmatrix}$$

7.
$$(10x^{-2}y^4)^0$$

8.
$$(x^{-3})^{-9}$$

9.
$$\frac{12x^7}{36x^9}$$

$$\frac{1}{3 \times^2}$$

$$10. \frac{48x^6y^7z^5}{-6xy^7z^6}$$

$$\frac{-8x^5}{7}$$

$$11.\left(\frac{3x^{-5}}{-24y^2}\right)$$

$$-\frac{1}{8x^5y^2}$$

12.
$$\left(\frac{4x^3}{7x^{-2}}\right)^2$$

*13.
$$\left(\frac{6x^{-4}y}{9xy^{-3}}\right)^3$$

$$\left(\frac{2}{3} \times \sqrt{-5}y^4\right)^3$$

$$\left(\frac{8}{27} \times \sqrt{5}\right)$$

*15.
$$\frac{(12xz^{-2})(3x^{-3}yz^{-4})}{(2x^{5}yz^{-7})^{2}}$$

$$\frac{36x^{-2}y^{-2}z^{-b}}{4x^{10}y^{2}z^{-14}}$$

*14.
$$\left(\frac{2x^{3}y^{2}z}{3x^{-4}yz^{-2}}\right)^{-2}$$

$$\left(\frac{3}{2}x^{3}y^{2}z^{-2}\right)^{2}$$

$$\left(\frac{3}{2}x^{3}y^{2}z^{-2}\right)^{2}$$
*16. $\frac{(3x^{-5}y^{2})^{0}(-4x^{7}y)^{2}}{(2x^{6})(-6y)^{-1}}$

$$\left(\frac{1}{2}x^{4}y^{2}\right)^{2}(-6y^{2})^{2}$$

$$\left(\frac{1}{2}x^{6}y^{2}\right)^{2}(-6y^{2})^{2}$$

$$\left(\frac{1}{2}x^{4}y^{2}\right)^{2}(-6y^{2})^{2}$$