Unit 25.4

Sequences (Guided Notes)

Objective: The student will be able to recognize a sequence, distinguish between arithmetic and geometric sequences, and understand/calculate the parts of each equation.

Sequence – A set of numbers in a specific order. It is discrete, not continuous.

Example1 - 8, 11, 14, 17, ...

Example2 - 6, 12, 24, 48 ...

Discrete - Data that can only take certain values.

For example: the number of students in a class (you can't have half a student).

Term - Each number in the sequence.

In Example 1 above - the 2nd term is 11, the 4th term is 17.

Types of Sequences

Formulas:

Arithmetic Sequence - A sequence made by adding the same value each time.

 $a_n = a_0 + d \cdot n$

Does this sequence and it's formula remind you of an equation we've worked with earlier this year?

Example: Write an equation for the following arithmetic sequences.

a. 1, 5, 9, 13, 17, ...

$$d = 4$$
 $a_0 = -3$
 $a_1 = -3 + 4n$

Sequences (Guided Notes)

Name:

Geometric Sequence - A sequence made by multiplying the same value each time.

Formulas: $a_n = a_0 \cdot r^n$

$$a_n = \frac{Value \ of the term you want}{a_0} = \frac{Zero term}{c} = \frac{a_1}{c}$$
 $c = \frac{a_2}{c} = \frac{a_2}{a_1}$
 $c = \frac{a_2}{a_1} = \frac{a_2}{a_1}$
 $c = \frac{a_2}{a_1} = \frac{a_2}{a_1}$
 $c = \frac{a_2}{a_1} = \frac{a_2}{a_1}$

Example: Write an equation for the following geometric sequences.

What if you can't easily find the '0' term?

Example: Write an equation for the following arithmetic sequences without using a_0 .

a.
$$10, 14, 18, 22, \dots (use a_1)$$

b.
$$-10, -5, 0, 5, 10, \dots (use a_4)$$

$$a_n = 5 + 5(n-4)$$

Example: Write an equation for the following geometric sequences without using a_0 .

a.
$$1, 3, 9, 27, 81, \dots (use a_5)$$

What if you're given a term and have to find the 'n'?

Example: Given: $a_n = -30 + 6n$; If $a_n = 48$, what is n?

$$78 = 61$$
 $10 = 13$

Example: Given: $a_n = 90 \cdot (\frac{1}{3})^n$; If $a_n = \frac{10}{27}$, what is n?

$$\frac{10}{27} = 90(\frac{1}{3})^{2}$$
 $\frac{1}{243} = (\frac{1}{3})^{2}$

Practice:

I. For each sequence, state if it is arithmetic, geometric, or neither. Then, if it's arithmetic or geometric, write a formula for it.

f.
$$5,1,\frac{1}{5},\frac{1}{25},\frac{1}{125}$$

II. Write the first 3 terms of the following sequences.

a.
$$a_n = -43 + 4n$$

$$a_1 = -39a_2 = -35a_3 = -3$$

b.
$$a_n = 2 \cdot (-3)^n$$

$$a_1 = \frac{-6}{6}a_2 = \frac{18}{18}a_3 = \frac{-54}{18}$$

b.
$$a_n = 3 \cdot (2)^{n-1}$$

$$a_1 = 3 a_2 = 6 a_3 = 12$$

d.
$$a_n = -163 + 200(n-1)$$

$$a_1 = \frac{163}{63}a_2 = \frac{37}{63}a_3 = \frac{237}{63}$$

Practice.

- 1. $a_n = 16 + 5n$
 - a. Find the 80th term.
 - b. If $a_n = 71$, what is n?

- 2. $a_n = -8 + 2n$
 - a. Find the 50th term.
 - b. If $a_n = 44$, what is n?

$$6) \quad 4u = -8 + 2n$$

$$52 - -2n$$

- 3. $a_n = 1080 36n$
 - a. Find the 16th term. b. If $a_n = 900$, what is n?

$$\frac{1}{(n=5)}$$

4.
$$a_n = -600 + 5n$$

a. Find the 900th term.
b. If $a_n = -225$, what is n?

$$6) -275 = -600 + 50$$

$$375 = 50 \quad \boxed{n = 75}$$

$$5. \ a_n = 3 \cdot 2^n$$

- a. Find the 10th term.
- b. If $a_n = 192$, what is n?

6.
$$a_n = 700(0.8)^n$$

- a. Find the 20th term.
- b. If $a_n = 358.4$, what is n?

b)
$$358.4 = 700(.8)^{n}$$

 $.512 = .8^{n}$

7.
$$a_n = 60(\frac{1}{2})^n$$

- a. Find the 10th term.
- b. If $a_n = \frac{15}{8}$, what is n?

$$\frac{15}{8} = 60(1/2)^{n}$$

$$03125 = (1/2)^{n}$$

$$(n = 5)$$

- 8. $a_n = 1000(0.95)^n$
 - a. Find the 16th term.
 - b. If $a_n = 902.5$, what is n?

a)
$$a_{16} = 1000(.95)^{16} = \boxed{440.13}$$

b) $902.5 = 1000(.95)^{1}$
 $9025 = .95^{1}$