Unit 2 5.4

Sequences (Guided Notes)

Name: _____

Objective: The student will be able to recognize a sequence, distinguish between arithmetic and geometric sequences, and understand/calculate the parts of each equation.

Sequence– A set of numbers in a specific order. It is discrete, not continuous.Example1- 8, 11, 14, 17, ...Example2- 6, 12, 24, 48 ...

Discrete – Data that can only take certain values. For example: the number of students in a class (you can't have half a student).

<u>**Term</u>** – Each number in the sequence. <u>In Example 1 above</u> – the 2nd term is 11, the 4th term is 17.</u>

Types of Sequences

		Formulas:
<u>Arithmetic Sequence</u> – A sequence made by adding the same value each time.		$a_n = a_0 + d \cdot n$
	<i>a</i> _{<i>n</i>} =	
	<i>a</i> ₀ =	
	d =	
Does this sequence and it's formula remind you of an equation we've worked with earlier this year?	<i>n</i> =	

<u>Example</u>: Write an equation for the following arithmetic sequences.

a. 1, 5, 9, 13, 17, ...

b. -3, -6, -9, -12, ...

Unit 2 5.4 <u>Geometric Sequence</u> – A the same value each time.	Sequences (Guided Notes) sequence made by multiplying	Name: Formulas: $a_n = a_0 \cdot r^n$
	<i>a</i> _{<i>n</i>} =	
	<i>a</i> ₀ =	
	<i>r</i> =	
	n =	

<u>Example</u>: Write an equation for the following geometric sequences.

a. 1, 4, 16, 64, 256, ...

b. -32, 16, -8, 4, ...

What if you can't easily find the '0' term?

<u>Example</u>: Write an equation for the following arithmetic sequences without using a_{0} .

a. 10, 14, 18, 22, ... (*use* a_1) b. -10, -5, 0, 5, 10, ... (*use* a_4)

<u>Example</u>: Write an equation for the following geometric sequences without using a_{0} .

a. $1, 3, 9, 27, 81, \dots$ (*use* a_5) b. $512, 256, 128, 64, \dots$ (*use* a_3)

Unit 2 5.4

Example: Given: $a_n = -30 + 6n$; If $a_n = 48$, what is n?

Example: Given: $a_n = 90 \cdot (\frac{1}{3})^n$; If $a_n = \frac{10}{27}$, what is n?

Practice:

- I. <u>For each sequence, state if it is arithmetic, geometric, or neither. Then, if it's arithmetic or geometric,</u> write a formula for it.
 - a. 8, 6, 4, 2, 0, -2, ... b. -4, 12, -36, 108, -324
 - c. 64, 48, 36, ... d. 0,3,8,15,24
 - e. -24, -26, -18, -10, -2f. $5, 1, \frac{1}{5}, \frac{1}{25}, \frac{1}{125}$
- II. Write the first 3 terms of the following sequences.
 - a. $a_n = -43 + 4n$ $a_1 = \underline{\ } a_2 = \underline{\ } a_3 = \underline{\ } a_3 = \underline{\ } a_1 = \underline{\ } a_2 = \underline{\ } a_3 = \underline$
 - b. $a_n = 3 \cdot (2)^{n-1}$ $a_1 = \underline{\ } a_2 = \underline{\ } a_3 = \underline{\ } a_3 = \underline{\ } a_1 = \underline{\ } a_2 = \underline{\ } a_3 = \underline{\ } a_$

Name: _____

Unit 2 5.4 Practice.

a_n = 16 + 5n
 a. Find the 80th term.
 b. If a_n = 71, what is n?

5. $a_n = 3 \cdot 2^n$ a. Find the 10th term. b. If $a_n = 192$, what is n?

2. $a_n = -8 + 2n$ a. Find the 50th term. b. If $a_n = 44$, what is n? 6. a_n = 700(0.8)ⁿ
a. Find the 20th term.
b. If a_n = 358.4, what is n?

3. a_n = 1080 - 36n
a. Find the 16th term.
b. If a_n = 900, what is n?

7. $a_n = 60(\frac{1}{2})^n$ a. Find the 10th term. b. If $a_n = \frac{15}{8}$, what is n?

4. $a_n = -600 + 5n$ a. Find the 900th term. b. If $a_n = -225$, what is n? 8. $a_n = 1000(0.95)^n$ a. Find the 16th term. b. If $a_n = 902.5$, what is n?