Warm-Up/Review:

1. $\frac{18 x^{6} y^{19}}{24 x y^{10}}$
2. $\left(-2 x^{3} y^{4}\right)\left(5 y^{7}\right)$
3. $\frac{\left(x^{2} y^{8} z\right)\left(6 x^{5} y z^{9}\right)}{20 x^{2} y^{3} z^{4}}$

Using the definition of exponents, what happens when bases are raised to another power...
Examples (Power to a Power):
$\left(2^{3}\right)^{4}$
$\left(x^{4}\right)^{2}$
$\left(x^{5} y^{2}\right)^{3}$

Can you generalize what has happened?

Using what you just learned, what happens when different bases are being divided and raised to a power?

$$
\left(\frac{a^{3}}{b^{5}}\right)^{2} \quad\left(\frac{c^{2}}{d}\right)^{9} \quad\left(\frac{f^{3} g^{2}}{k^{4}}\right)^{5}
$$

Does it change the rule?

What about coefficients?! What do we do with those?!

$\left(6 x^{4}\right)^{3}$	$\left(9 a^{2} b^{4}\right)^{2}$	$\left(7 c d^{2}\right)^{3}$
$\left(\frac{3 n^{4}}{m^{5}}\right)^{4}$	$\left(\frac{4 x^{3} y^{2}}{z^{8}}\right)^{3}$	$\left(\frac{2 f^{3} g^{2}}{5 k^{4}}\right)^{5}$

Unit 2 4.3p Power to a Power

1. $\left(3 x^{5} y z^{9}\right)^{5}$
2. $\left(\frac{b^{3}}{c^{5}}\right)^{4}$
3. $\left(8 j^{3}\right)^{3}$
4. $\left(\frac{2 x}{3 y^{2}}\right)^{12}$
5. $\left(10 w^{4} x y z^{2}\right)^{2}$
6. Challenge: $\left(\frac{(-2 x)^{2}}{3 x y^{2}}\right)^{3}$
