## Unit 2 6.2 Function Notation and Evaluating Functions

Objective: Understand function notation and how to evaluate in function notation.

Although you're familiar with x and y, "function notation" uses x and f(x)

If the equation is a function, it can be rewritten:  $y = -\frac{1}{2}x + 5$   $\Rightarrow$   $f(x) = -\frac{1}{2}x + 5$ 

 $f(x), g(x), h(x) \dots$ 

- o is the same as \_\_\_\_\_\_\_
  o means that the relation is a function
- o gives the equation a Name

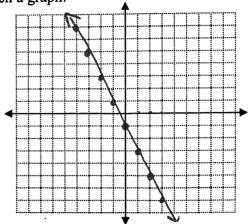
Example 1: f(-5) means to plug -5 in for x = -3x + 7 in for x = -3x + 7 and simplify. f(-5) = -3(-5) + 7f(-5) = 22(-5,22)

f(x) = -3x + 728 = -3x + 7Example 2: f(x) = 28 means plus 28 in for 4 and solve for 4. *(*7.28)

1. Evaluate the following expressions given the functions below:

$$g(x) = -3x + 1$$
  $f(x) = x^2 + 7$   $h(x) = \frac{12}{x}$   $j(x) = 2x + 9$ 

- **a.** g(10) =-3(10)+1 -29
- d. i(7) =2(7)+9
- **h.** Find x if g(x) = 16


- **b.** f(3) =32+7 16
- e. h(36) =i. Find x if j(x) = -3
  - -3=2X+9
    - -12-2X -10=X

- c. h(-2) =
- f. f(-4) =1-412+7
- j. Find x if f(x) = 23

$$23 = x^{2} + 7$$
 $16 = x^{2}$ 
 $34 = x$ 

2. Given f(x) = -2x + 1 Fill in the table and then sketch a graph.

| x  | f(x) |
|----|------|
| -3 | 7    |
| 0  | (    |
| 2  | -5   |
| 3  | -7   |
| 5  | -9   |



Example 1: f(x) = 2x - 6

Complete the table of values.

| X  | f(x) |
|----|------|
| -2 | -10  |
| 0  | -9   |
| 1  | -4   |
| -1 | -8   |
| 4  | 2    |

a. 
$$f(-1) = -8$$

b. If 
$$f(x) = -10$$
 then  $x = -2$ 

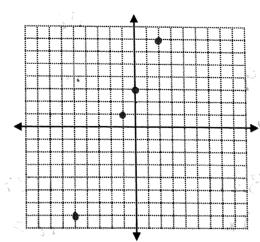
Example 2: 
$$f(x) = x^2 - 2x - 1$$

Complete the table of values.

| Х  | f(x) |
|----|------|
| -1 | 2    |
| 0  |      |
| 1  | -2   |
| 2  | -1   |
| 3  | 2    |

a. 
$$f(2) = -1$$

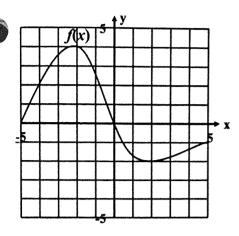
a. 
$$f(2) = -1$$
  
b. If  $f(x) = -2$  then  $x = -1$ 


3. Translate the following statements into coordinate points, then plot them!

a. 
$$f(-1) = 1 \rightarrow (-1, 1)$$

**b.** 
$$f(2) = 7 \rightarrow (2, 7)$$

c. 
$$f(-5) = -7 \rightarrow (-5, -7)$$


**d.** 
$$f(0) = 3 \rightarrow (0, 3)$$



## Unit 2 6.2 Function Notation and Evaluating Functions

Name:

4. Given this graph of the function f(x):



Find:

a. 
$$f(-4) = 2$$

a. 
$$f(-4) = 2$$
 b.  $f(0) = 0$ 

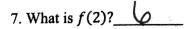
c. 
$$f(5) = -$$

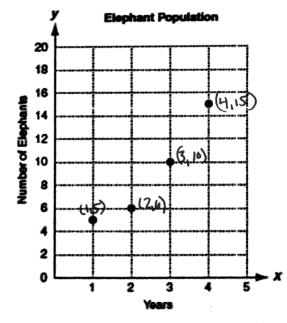
c. 
$$f(5) = -$$
 d.  $f(-5) =$ 

e. 
$$x$$
 when  $f(x) = 4$   $x = -2$  f.  $x$  when  $f(x) = -2$   $x = 2$ 

**f.** 
$$x$$
 when  $f(x) = -2$   $x = 2$ 

Use the graph below to answer questions 5-8.

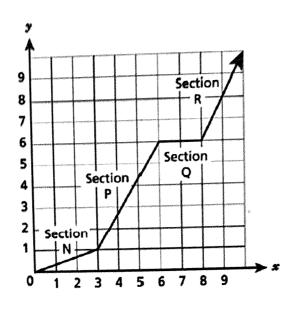

A conservation group has been working to increase the population of a herd of Asian elephants. The graph shows the results of their efforts. Select the correct answer.


5. Which relation represents the information in the graph?

- A {(1, 4.5), (2, 6), (3, 10), (4, 14.5)}
- (B){(1, 5), (2, 6), (3, 10), (4, 15)}
- C {(4.5, 1), (6, 2), (10, 3), (14.5, 4)}
- D {(5, 1), (6, 2), (10, 3), (15, 4)}

6. What is the range of the relation shown in the graph?

- A [0, 1, 2, 3, 4, 5]
- B {1, 2, 3, 4}
- C (4.5, 6, 10, 14.5)
- (D) [5, 6, 10, 15]






8. What does f(2) represent in the context of the problem?

after 2 years there were le elephants in the herd.

9. The graph of a function is shown below.



Which statement is true about a section of the graph?

A In Section N, the function is linear and decreasing.

- (B) In Section P, the function is linear and increasing.
  - C In Section Q, the function is nonlinear and decreasing.
  - D In Section R, the function is nonlinear and increasing.

10. Which statement best explains whether these ordered pairs represent a function?

- A The ordered pairs represent a function because no output values are repeated.
- **B** The ordered pairs represent a function because each output value is greater than each input value.
- The ordered pairs do not represent a function because one input value has two different output values.
- D The ordered pairs do not represent a function because the difference between the input and output of each ordered pair is not the same.