Objective: Understand function notation and how to evaluate in function notation.

Although you're familiar with x and y, "function notation" uses x and f(x)

If the equation is a function, it can be rewritten: $y = -\frac{1}{2}x + 5$ \Rightarrow $f(x) = -\frac{1}{2}x + 5$

f(x),g(x),h(x)...

- o is the same as _____
- o means that the relation is a _____
- o gives the equation a _____

f(x) = -3x + 7Example 1: f(-5) means to plug _____ in for ____ and simplify. f(-5) = -3(-5) + 7f(-5) = 15 + 7f(-5) = 22(-5,22)

f(x) = -3x + 728 = -3x + 7Example 2: f(x) = 28 means plug _____ in for ____ and solve for ____. 21 = -3x-7 = x(-7.28)

1. Evaluate the following expressions given the functions below:

$$g(x) = -3x + 1$$
 $f(x) = x^2 + 7$

$$f(x) = x^2 + 7$$

$$h(x) = \frac{12}{x}$$

$$h(x) = \frac{12}{x} \qquad \qquad j(x) = 2x + 9$$

a.
$$g(10) =$$

b.
$$f(3) =$$

c.
$$h(-2) =$$

d.
$$j(7) =$$

e.
$$h(36) =$$

f.
$$f(-4) =$$

h. Find
$$x$$
 if $g(x) = 16$

i. Find x if
$$i(x) = -3$$

h. Find *x* if
$$g(x) = 16$$
 i. Find *x* if $j(x) = -3$ **j.** Find *x* if $f(x) = 23$

2. Given f(x) = -2x + 1 Fill in the table and then sketch a graph.

x	f(x)
-3	
0	
2	
3	
	-9

Example 1: f(x) = 2x - 6

Complete the table of values.

X	f(x)
-2	
0	
1	
-1	
4	

a.
$$f(-1) =$$

b. If
$$f(x) = -10$$
 then $x = ______$

Example 2: $f(x) = x^2 - 2x - 1$

Complete the table of values.

X	f(x)
-1	
0	
1	
2	
3	

a.
$$f(2) =$$

b. If
$$f(x) = -2$$
 then $x = _______$

3. Translate the following statements into coordinate points, then plot them!

a.
$$f(-1) = 1 \rightarrow$$

b.
$$f(2) = 7 \rightarrow$$

c.
$$f(-5) = -7 \rightarrow$$

d.
$$f(0) = 3 \rightarrow$$

Unit 2 6.2 Function Notation and Evaluating Functions

Name:

4. Given this graph of the function f(x):

Find:

a.
$$f(-4) =$$

a.
$$f(-4) =$$
______ **b.** $f(0) =$ _____

$$\mathbf{c.} \ f(5) = \underline{\hspace{1cm}}$$

c.
$$f(5) =$$
______ **d.** $f(-5) =$ ______

Use the graph below to answer questions 5-8.

A conservation group has been working to increase the population of a herd of Asian elephants. The graph shows the results of their efforts. Select the correct answer.

5. Which relation represents the information in the graph?

$$C \{(4.5, 1), (6, 2), (10, 3), (14.5, 4)\}$$

6. What is the range of the relation shown in the graph?

7. What is f(2)?_____

8. What does f(2) represent in the context of the problem?

9. The graph of a function is shown below.

Which statement is true about a section of the graph?

- A In Section N, the function is linear and decreasing.
- B In Section P, the function is linear and increasing.
- C In Section Q, the function is nonlinear and decreasing.
- D In Section R, the function is nonlinear and increasing.

10. Which statement best explains whether these ordered pairs represent a function?

$$(-4, 2), (6, 7), (-8, 3), (9, 10), (12, 14), (6, 9)$$

- A The ordered pairs represent a function because no output values are repeated.
- **B** The ordered pairs represent a function because each output value is greater than each input value.
- C The ordered pairs do not represent a function because one input value has two different output values.
- D The ordered pairs do not represent a function because the difference between the input and output of each ordered pair is not the same.