Definition of an exponent - An expression like $x^{n}$ is called a power and is read "x to the nth power." The variable $x$ is called the base, and $n$ is called the exponent. The exponent indicates the number of times the base is used as a factor.

## Examples:

$7^{3}$
$x^{5}$

$$
y^{2} w^{4}
$$

Using the definition of exponents explore what happens when like bases are multiplied...

$$
x^{3} * x^{8}
$$

$2^{4} * 2^{2}$
$\left(x^{2} y\right)\left(x^{3} y^{4}\right)$

Can you generalize what has happened?

Using the definition of exponents explore what happens when like bases are divided...

$$
\frac{x^{9}}{x^{3}}
$$

$$
\frac{2^{8}}{2^{5}}
$$

$$
\frac{y^{2} w^{4}}{y^{2} w^{3}}
$$

Can you generalize what has happened?

What about coefficients?! What do we do with those?! What if I have to multiply and divide?!

$$
2 y * 3 x y^{8} \quad \frac{-108 z^{5} a^{10}}{81 z^{3} a^{4}} \quad \frac{\left(10 c^{3}\right)\left(25 c^{9}\right)}{(150 c)\left(-5 c^{7}\right)}
$$

Unit 2 4.2p
Properties of Exponents: Multiply and Divide Practice

1. $x^{3} * x^{6} * x$
2. $a^{3} * b^{6} * a^{7} * b^{2}$
3. $4 c^{8} * 8 c^{3}$
4. $\left(k^{9}\right)\left(7 k^{3}\right)$
5. $\left(-4 d^{4}\right)(9 d)$
6. $\left(5 x^{2}\right)(2 x)\left(-3 x^{7}\right)$
7. $\left(2 x^{6} y^{2}\right)\left(-9 x^{3} y^{5}\right)$
8. $\frac{12^{8}}{12^{6}}$
9. $\frac{h^{15} j^{22}}{h^{9} j^{19}}$
10. $\frac{10 r^{14}}{2 r^{8}}$
11. $\frac{8 c^{5}}{10 c^{2}}$
12. $\frac{25 y^{17}}{15 y}$
13. $\frac{-32 a^{8} b^{13}}{40 a b^{10}}$
14. $\frac{-52 f^{5} g}{-4 f^{9} g^{5}}$
15. $\frac{18 x^{7} y^{7} z^{3}}{\left(24 x^{3}\right)\left(3 x^{2} y z^{2}\right)}$
16. $\left(-f^{14} a^{19} l^{12} a^{2}\right)\left(-l^{10} a^{3} l a\right) \quad$ 17. $\frac{-7 a^{5} b c^{6} * 16 a b^{2} c}{28 a^{3} b c^{4}}$
*18. $\left(-2 x^{5}\right)^{3}$
