Unit 2 3.1

Graphing a Linear Inequality Notes

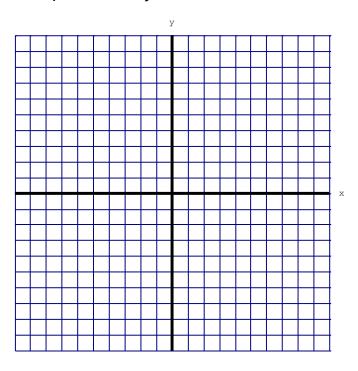
Objective: Determine the solution to a system of linear inequalities by graphing.

Graph: $y \ge 2x - 5$

Step 1: Put the inequality in slope-intercept form

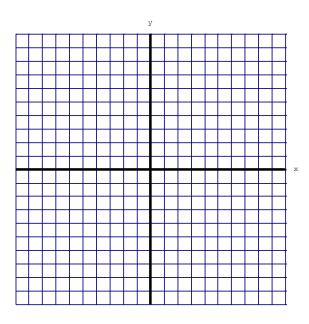
 $\sim\sim\sim\sim\sim\sim$

Step 2: Graph the inequality (dashed or solid?)

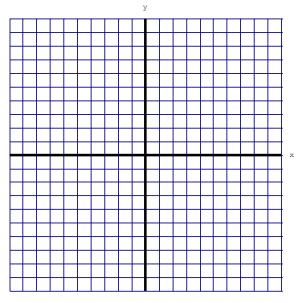

Step 3: Figure out where to shade by picking a test point. A common test point to use is (0, 0).

If the test point gives a <u>true</u> statement you shade the <u>half</u> the test point is in.

If the test point gives a <u>false</u> statement you shade the <u>opposite half</u> the test point is in.

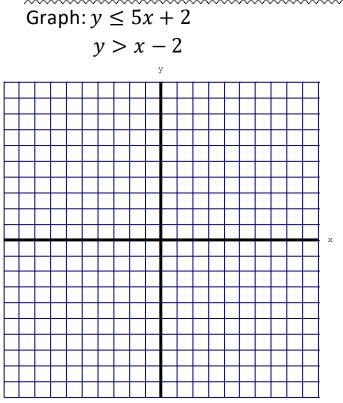

You try:

Graph: 2x + 4y < 8



Examples:

1. Graph the inequality $y > -\frac{1}{2}x + 5$. What are some solutions to the inequality? (,) (,) (,)

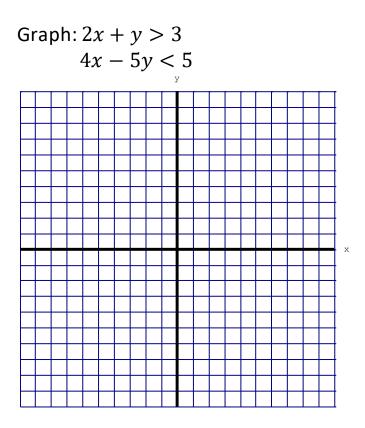


2. Graph the inequality y < x + 2. What are some solutions to the inequality? (,) (,) (,) (,)

- 3. Looking at both graphs:
 - a. Are there any solutions that work for both inequalities? Give three examples (_ , _) (_ , _) (_ , _)
 - b. Are there any solutions that work for 1 inequality but not the other?
 Give three examples (,) (,) (,) and write the correct inequality below each answer.

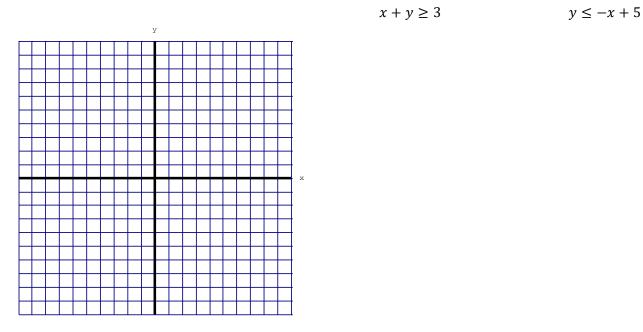
Graphing a System of Inequalities Notes

Step 1: Put both inequalities in slope-intercept form

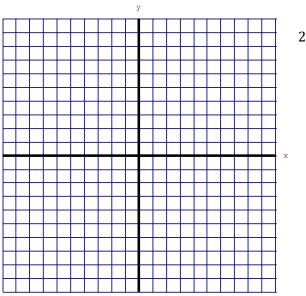

Step 2: Graph each inequality (dashed or solid?)

Step 3: Figure out where to shade by picking a test point. A common test point to use is (0, 0).

Test point must make **both** equations **true**.

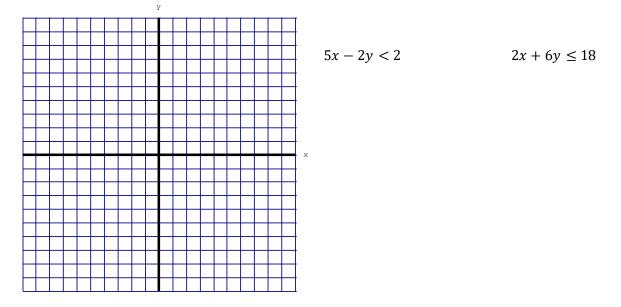

- Method 1: Guess and check each of the four regions
- Method 2: Shade both regions individually and the overlap is your answer

You try:

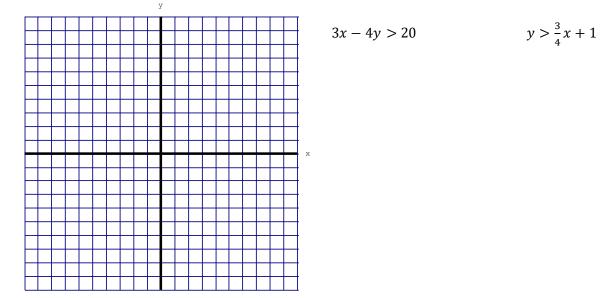


Examples:

4. Graph the following system of inequalities on the same graph. Use a different color for each.



- a. Give three coordinates that are solutions to the system. $(\ ,\)\ (\ ,\)\ (\ ,\)$
- b. Give three coordinates that are not solutions to the system. (,) (,) (,)
- c. Is a coordinate on a line a solution?
- 5. Graph the following on the same graph and give three solutions. (,) (,) (,)



$$2x + 3y < 6 \qquad \qquad x + 5y > 5$$

6. Graph the following on the same graph and give three solutions. (,) (,) (,)

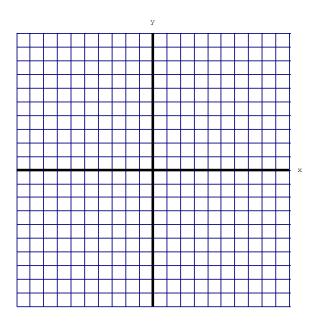
7. Graph the following on the same graph and give three solutions. (,) (,) (,) (,)

Summary of Systems of Linear Inequalities

*The solution to a system of linear equations is the ______ of intersection.

*The solution to a system of linear inequalities is the ______ of intersection.

•In order to solve a system of linear *inequalities*, you MUST graph.


Steps for Graphing Linear Inequalities and a System of Linear Inequalities

- 1.) Solve each inequality for *y*.
 ♦ <u>DON'T FORGET</u>: Flip the sign if you multiply or divide by a negative number!
- 2.) Graph each line. $\Rightarrow and < ____$ line $\Rightarrow and \leq ____$ line
- 3.) Shade each line.
 - ♦ For > and ≥ shade _____ the line
 ♦ For < and ≤ shade _____ the line
- 4.) The "solution region" is the area where <u>all</u> the shadings overlap.
 - ◆ Dashed lines are/are not part of the solution.
 - Solid lines are/are not part of the solution.

Graph the system of inequalities then determine which of the following orders pairs would be solutions:

4x + 6y > 36

 $-12x + 3y \le -9$

Circle the ordered pairs that are solutions.

Cross off the ordered pairs that are not solutions.

- a. (6,2)
 b. (10,5)
 c. (-5,10)
 d. (0,-3)
 e. (-10,5)
 f. (5,-10)
 g. (2,5)
- h. (-9,0)