Unit 23.1

Graph: $y \geq 2 x-5$
y

Step 1: Put the inequality in slope-intercept form

Step 2: Graph the inequality (dashed or solid?)

Step 3: Figure out where to shade by picking a test point. A common test point to use is $(0,0)$.

If the test point gives a true statement you shade the half the test point is in.

If the test point gives a false statement you shade the opposite half the test point is in.

You try:
Graph: $2 x+4 y<8$

Examples:

1. Graph the inequality $y>-\frac{1}{2} x+5$. What are some solutions to the inequality? (,) (,) ()

2. Graph the inequality $y<x+2$. What are some solutions to the inequality? (,) () ()

3. Looking at both graphs:
a. Are there any solutions that work for both inequalities?

Give three examples (\quad) ($)(\mathrm{l})$
b. Are there any solutions that work for 1 inequality but not the other?

Give three examples (,) () () and write the correct inequality below each answer.

Graphing a System of Inequalities Notes

Graph: $y \leq 5 x+2$

$$
y>x-2
$$

Step 2: Graph each inequality (dashed or solid?)

Step 3: Figure out where to shade by picking a test point. A common test point to use is $(0,0)$.

Test point must make both equations true.

- Method 1: Guess and check each of the four regions
- Method 2: Shade both regions individually and the overlap is your answer

You try:

Graph: $2 x+y>3$

$$
4 x-5 y<5
$$

Examples:

4. Graph the following system of inequalities on the same graph. Use a different color for each.

$$
x+y \geq 3 \quad y \leq-x+5
$$

a. Give three coordinates that are solutions to the system. $(),, \quad(),($,
b. Give three coordinates that are not solutions to the system. (,) () ()
c. Is a coordinate on a line a solution?
5. Graph the following on the same graph and give three solutions. (,) () ()

$$
2 x+3 y<6
$$

$$
x+5 y>5
$$

6. Graph the following on the same graph and give three solutions. (,) () (,)

$$
5 x-2 y<2 \quad 2 x+6 y \leq 18
$$

7. Graph the following on the same graph and give three solutions. (,) (,) ()

$$
3 x-4 y>20 \quad y>\frac{3}{4} x+1
$$

Summary of Systems of Linear Inequalities

*The solution to a system of linear equations is the \qquad of intersection.
*The solution to a system of linear inequalities is the \qquad of intersection.
-In order to solve a system of linear inequalities, you MUST graph.

Steps for Graphing Linear Inequalities and a System of Linear Inequalities

1.) Solve each inequality for y.

* DON'T FORGET: Flip the sign if you multiply or divide by a negative number!
2.) Graph each line.
* $>$ and $<$ \qquad line
* \geq and \leq \qquad line
3.) Shade each line.
* For $>$ and \geq shade \qquad the line
* For $<$ and \leq shade \qquad the line
4.) The "solution region" is the area where all the shadings overlap.
* Dashed lines are/are not part of the solution.
* Solid lines are/are not part of the solution.

Graph the system of inequalities then determine which of the following orders pairs would be solutions:
$4 x+6 y>36$
$-12 x+3 y \leq-9$

Circle the ordered pairs that are solutions.
Cross off the ordered pairs that are not solutions.
a. $(6,2)$
b. $(10,5)$
c. $(-5,10)$
d. $(0,-3)$
e. $(-10,5)$
f. $(5,-10)$
g. $(2,5)$
h. $(-9,0)$

